Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593345

RESUMO

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Assuntos
Proteoglicanas de Heparan Sulfato , Neoplasias , Humanos , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação Puntual , Proteínas da Matriz Extracelular/genética , Imunoglobulinas , Estabilidade Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolases/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
2.
Mol Brain ; 17(1): 16, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475840

RESUMO

Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais , Deficiência Intelectual , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Camundongos , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cognição , Aprendizagem em Labirinto , Mudança Social , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Front Mol Neurosci ; 16: 1298238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098940

RESUMO

Environmental and genetic factors influence synapse formation. Numerous animal experiments have revealed that pesticides, including herbicides, can disturb normal intracellular signals, gene expression, and individual animal behaviors. However, the mechanism underlying the adverse outcomes of pesticide exposure remains elusive. Herein, we investigated the effect of maternal exposure to the herbicide glufosinate ammonium (GLA) on offspring neuronal synapse formation in vitro. Cultured cerebral cortical neurons prepared from mouse embryos with maternal GLA exposure demonstrated impaired synapse formation induced by synaptic organizer neuroligin 1 (NLGN1)-coated beads. Conversely, the direct administration of GLA to the neuronal cultures exhibited negligible effect on the NLGN1-induced synapse formation. The comparison of the transcriptomes of cultured neurons from embryos treated with maternal GLA or vehicle and a subsequent bioinformatics analysis of differentially expressed genes (DEGs) identified "nervous system development," including "synapse," as the top-ranking process for downregulated DEGs in the GLA group. In addition, we detected lower densities of parvalbumin (Pvalb)-positive neurons at the postnatal developmental stage in the medial prefrontal cortex (mPFC) of offspring born to GLA-exposed dams. These results suggest that maternal GLA exposure induces synapse pathology, with alterations in the expression of genes that regulate synaptic development via an indirect pathway distinct from the effect of direct GLA action on neurons.

4.
Bioorg Med Chem Lett ; 93: 129438, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549852

RESUMO

GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , Glutaminase/antagonistas & inibidores , Tiadiazóis/farmacologia , Tiadiazóis/química
5.
Front Aging Neurosci ; 15: 1211067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455930

RESUMO

Background: Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods: We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results: Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion: These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.

6.
Biochem Biophys Res Commun ; 658: 27-35, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37018886

RESUMO

The beiging of white adipose tissue (WAT) is expected to improve systemic metabolic conditions; however, the regulation and developmental origin of this process remain insufficiently understood. In the present study, the implication of platelet-derived growth factor receptor alpha (PDGFRα) was examined in the beiging of inguinal WAT (ingWAT) of neonatal mice. Using in vivo Nestin expressing cell (Nestin+) lineage tracing and deletion mouse models, we found that, in the mice with Pdgfra gene inactivation in Nestin+ lineage (N-PRα-KO mice), the growth of inguinal WAT (ingWAT) was suppressed during neonatal periods as compared with control wild-type mice. In the ingWAT of N-PRα-KO mice, the beige adipocytes appeared earlier that were accompanied by the increased expressions of both adipogenic and beiging markers compared to control wild-type mice. In the perivascular adipocyte progenitor cell (APC) niche of ingWAT, many PDGFRα+ cells of Nestin+ lineage were recruited in Pdgfra-preserving control mice, but were largely decreased in N-PRα-KO mice. This PDGFRα+ cell depletion was replenished by PDGFRα+ cells of non-Nestin+ lineage, unexpectedly resulting in an increase of total PDGFRα+ cell number in APC niche of N-PRα-KO mice over that of control mice. These represented a potent homeostatic control of PDGFRα+ cells between Nestin+ and non-Nestin+ lineages that was accompanied by the active adipogenesis and beiging as well as small WAT depot. This highly plastic nature of PDGFRα+ cells in APC niche may contribute to the WAT remodeling for the therapeutic purpose against metabolic diseases.


Assuntos
Adipócitos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Camundongos , Animais , Linhagem da Célula , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Gordura Subcutânea/metabolismo
7.
Bioorg Med Chem Lett ; 87: 129266, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011768

RESUMO

Glutaminase converts glutamine into glutamic acid and has two isoforms: glutaminase 1 (GLS1) and glutaminase 2 (GLS2). GLS1 is overexpressed in several tumors, and research to develop glutaminase inhibitors as antitumor drugs is currently underway. The present study examined candidate GLS1 inhibitors using in silico screening and attempted to synthesize novel GLS1 inhibitors and assess their GLS1 inhibitory activities in a mouse kidney extract and against recombinant mouse and human GLS1. Novel compounds were synthesized using compound C as the lead compound, and their GLS1 inhibitory activities were evaluated using the mouse kidney extract. Among the derivatives tested, the trans-4-hydroxycyclohexylamide derivative 2j exhibited the strongest inhibitory activity. We also assessed the GLS1 inhibitory activities of the derivatives 2j, 5i, and 8a against recombinant mouse and human GLS1. The derivatives 5i and 8a significantly decreased the production of glutamic acid at 10 mM. In conclusion, we herein identified two compounds that exhibited GLS1 inhibitory activities with equal potencies as known GLS1 inhibitors. These results will contribute to the development of effective novel GLS1 inhibitors with more potent inhibitory activity.


Assuntos
Ácido Glutâmico , Glutaminase , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glutamina , Relação Estrutura-Atividade
8.
Nat Commun ; 13(1): 7058, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411280

RESUMO

Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-ß1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-ß signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.


Assuntos
Adipogenia , Folistatina , Animais , Camundongos , Macrófagos , Camundongos Transgênicos , Músculos , Receptor de Manose/imunologia
9.
Sports (Basel) ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287775

RESUMO

BACKGROUND: The present case study examined the relationship between 24 h ultramarathon performance and the "big three" strategies of training, nutrition, and pacing. METHODS: A 32-year-old male ultramarathon runner (body mass: 68.5 kg, height: 179 cm) participated in a 24 h ultramarathon race. Training status was quantified based on from a GPS sports watch. The nutritional status was evaluated during the week leading up to the race, and blood glucose level and heart rate were measured during the race. RESULTS: His aim of the distance was 200 km, but the actual performance was 171.760 km. The blood glucose level was stable because of adequate CHO intake before (7.2 ± 0.8 g/kg/day) and during the race (48 g/h). The running speed decreased in the middle and later stages of the race despite adequate CHO intake and a lack of high intensity running in the early stage of the race. The longest training session before the race (80 km) had to be significantly shorter compared to the aim. CONCLUSIONS: For optimal 24 h ultramarathon performance, the "big three" strategies of training, nutrition, and pacing are all important. However, the performance level estimated based on previous studies may be achievable even with insufficient training, as long as the nutritional and pacing strategies are appropriate.

10.
Front Cell Dev Biol ; 10: 1014008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211457

RESUMO

Actin is one of the most prevalent proteins in cells, and its amino acid sequence is remarkably conserved from protozoa to humans. The polymerization-depolymerization cycle of actin immediately below the plasma membrane regulates cell function, motility, and morphology. It is known that actin and other actin-binding proteins are targets for reactive oxygen species (ROS), indicating that ROS affects cells through actin reorganization. Several researchers have attempted to control actin polymerization from outside the cell to mimic or inhibit actin reorganization. To modify the polymerization state of actin, ultraviolet, visible, and near-infrared light, ionizing radiation, and chromophore-assisted light inactivation have all been reported to induce ROS. Additionally, a combination of the fluorescent protein KillerRed and the luminescent protein luciferase can generate ROS on actin fibers and promote actin polymerization. These techniques are very useful tools for analyzing the relationship between ROS and cell function, movement, and morphology, and are also expected to be used in therapeutics. In this mini review, we offer an overview of the advancements in this field, with a particular focus on how to control intracellular actin polymerization using such optical approaches, and discuss future challenges.

11.
J Biochem ; 172(5): 321-327, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36047849

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a crucial role in numerous brain functions, including memory consolidation. Previously, we generated a Bdnf-Luciferase transgenic (Bdnf-Luc) mouse strain to visualize changes in Bdnf expression using in vivo bioluminescence imaging. We successfully visualized activity-dependent Bdnf induction in living mouse brains using a d-luciferin analog, TokeOni, which distributes to the brain and produces near-infrared bioluminescence. In this study, we compared the patterns of bioluminescence signals within the whole body of the Bdnf-Luc mice produced by d-luciferin, TokeOni and seMpai, another d-luciferin analog that produces a near-infrared light. As recently reported, hepatic background signals were observed in wild-type mice when using TokeOni. Bioluminescence signals were strongly observed from the region containing the liver when using d-luciferin and TokeOni. Additionally, we detected signals from the brain when using TokeOni. Compared with d-luciferin and TokeOni, signals were widely detected in the whole body of Bdnf-Luc mice by seMpai. The signals produced by seMpai were strong in the regions containing skeletal muscles in particular. Taken together, the patterns of bioluminescence signals in Bdnf-Luc mice vary when using different luciferase substrates. Therefore, the expression of Bdnf in tissues and organs of interest could be visualized by selecting an appropriate substrate.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Luciferinas , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Luciferases/genética , Luciferases/metabolismo
12.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955470

RESUMO

This study demonstrates that the luciferin of the firefly squid Watasenia scintillans, which generally reacts with Watasenia luciferase, reacted with human albumin to emit light in proportion to the albumin concentration. The luminescence showed a peak wavelength at 540 nm and was eliminated by heat or protease treatment. We used urine samples collected from patients with diabetes to quantify urinary albumin concentration, which is essential for the early diagnosis of diabetic nephropathy. Consequently, we were able to measure urinary albumin concentrations by precipitating urinary proteins with acetone before the reaction with luciferin. A correlation was found with the result of the immunoturbidimetric method; however, the Watasenia luciferin method tended to produce lower albumin concentrations. This may be because the Watasenia luciferin reacts with only intact albumin. Therefore, the quantification method using Watasenia luciferin is a new principle of urinary albumin measurement that differs from already established methods such as immunoturbidimetry and high-performance liquid chromatography.


Assuntos
Decapodiformes , Vaga-Lumes , Albuminas/metabolismo , Albuminúria/diagnóstico , Animais , Decapodiformes/química , Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Humanos , Luciferinas
13.
Curr Alzheimer Res ; 19(7): 485-493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35346007

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by extracellular ß-amyloid (Aß) plaques and cognitive impairments. D-Serine, produced by the enzyme serine racemase (SR) in the brain, functions as an endogenous co-agonist at the glycine-binding site of N-methyl-D-aspartate receptor (NMDAR), has been implicated in the pathophysiological progression of AD. OBJECTIVES: Evidence regarding the understanding of the role and dynamic modulation of D-serine during AD progression remains controversial. This literature review aims to offer novel research directions for studying the functions and metabolisms of D-serine in AD brains. METHODS: We searched PubMed, using D-serine/SR and AD as keywords. Studies related to NMDAR dysfunction, neuronal excitotoxicity, D-serine dynamic changes and inflammatory response were included. RESULTS: This review primarily discusses: (i) Aß oligomers' role in NMDAR dysregulation, and the subsequent synaptic dysfunction and neuronal damage in AD, (ii) D-serine's role in NMDAR-elicited excitotoxicity, and (iii) the involvement of D-serine and SR in AD-related inflammatory pathological progression. CONCLUSION: We also presented supposed metabolism and dynamic changes of D-serine during AD progression and hypothesized that: (i) the possible modulation of D-serine levels or SR expression as an effective method of alleviating neurotoxicity during AD pathophysiological progression, and (ii) the dynamic changes of D-serine levels in AD brains possibly resulting from complex processes.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Serina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia
14.
Sci Adv ; 8(10): eabn3264, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275721

RESUMO

d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona/metabolismo , Ciona intestinalis/metabolismo , Epiderme/metabolismo , Mamíferos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
15.
Front Neurosci ; 16: 1030702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685240

RESUMO

The retrieval of fear memories induces two opposing processes, reconsolidation, and extinction. The memory reconsolidation is an active process that involves gene expression and updates an existing memory. It is hypothesized that blockade of reconsolidation by manipulating the neurobiological factors, which are mechanistically involved in the process, could weaken or disrupt the original fear memory. The N-methyl-D-aspartate (NMDA) receptor and hippocampal neurogenesis play crucial roles in hippocampus-dependent memory processes, including reconsolidation. Using contextual fear conditioning paradigm with multiple retrievals, we attempted to weaken the original contextual fear memory by repeatedly disrupting retrieval-induced reconsolidation via downregulation of NMDA receptor signaling and inhibition of neurogenesis. In the first experiment, prior to fear conditioning, NMDA receptor signaling was downregulated by the genetic reduction of its co-agonist, D-serine, and the neurogenesis was dampened by focal X-ray irradiation on the hippocampus. We found that simultaneous D-serine reduction and neurogenesis dampening resulted in a progressive decrease in freezing following each retrieval, leading to an attenuation of remote contextual fear memory on day 28. In the second experiment using the same behavioral protocols, after conditioning, pharmacological approaches were conducted to simultaneously block D-serine signaling and neurogenesis, resulting in a similar suppressive effect on the remote fear memory. The present findings provide insights for understanding the role of D-serine-mediated NMDA receptor signaling and neurogenesis in memory retrieval and the maintenance of remote fear memory, and improving the efficacy of exposure-based therapy for the treatment of post-traumatic stress disorder (PTSD).

16.
Oncol Lett ; 23(1): 14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820013

RESUMO

Pancreatic cancer is a malignant neoplasm with high invasiveness and poor prognosis. In a previous study, a highly invasive pancreatic cancer cell line was established and found to feature enhanced interleukin-32 (IL-32) expression. However, whether IL-32 promotes the invasiveness by enhancing or suppressing the expression of IL-32 through regulating downstream molecules was unclear. To investigate the effect of IL-32, cells were established with high levels of expression or downregulated IL-32; their invasive ability was measured using a real-time measurement system and the expression of some candidate downstream molecules involved in invasion was evaluated in the two cell types. The morphological changes in both cell types and the localization of IL-32 expression in pancreatic cancer tissues were studied using immunohistochemistry. Among the several splice variants of IL-32, cells transfected with the ε isoform had increased invasiveness, whereas the IL-32-suppressed cells had reduced invasiveness. Several downstream molecules, whose expression was changed in the two cell types, were monitored. Notably, changes of E-cadherin, CLDN1, CD44, CTGF and Wnt were documented. The morphologies of the two cell types differed from the original cell line. Immunohistochemically, the expression of IL-32 was observed only in tumor cells and not in normal pancreatic cells. In conclusion, IL-32 was found to promote the invasiveness of pancreatic cancer cells by regulating downstream molecules.

17.
Nat Commun ; 12(1): 6767, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799586

RESUMO

Nicotinamide riboside (NR) is one of the orally bioavailable NAD+ precursors and has been demonstrated to exhibit beneficial effects against aging and aging-associated diseases. However, the metabolic pathway of NR in vivo is not yet fully understood. Here, we demonstrate that orally administered NR increases NAD+ level via two different pathways. In the early phase, NR was directly absorbed and contributed to NAD+ generation through the NR salvage pathway, while in the late phase, NR was hydrolyzed to nicotinamide (NAM) by bone marrow stromal cell antigen 1 (BST1), and was further metabolized by the gut microbiota to nicotinic acid, contributing to generate NAD+ through the Preiss-Handler pathway. Furthermore, we report BST1 has a base-exchange activity against both NR and nicotinic acid riboside (NAR) to generate NAR and NR, respectively, connecting amidated and deamidated pathways. Thus, we conclude that BST1 plays a dual role as glycohydrolase and base-exchange enzyme during oral NR supplementation.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Glicosídeo Hidrolases/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacocinética , Células A549 , ADP-Ribosil Ciclase/genética , Administração Oral , Envelhecimento/efeitos dos fármacos , Animais , Antígenos CD/genética , Suplementos Nutricionais , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Glicosídeo Hidrolases/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Camundongos , Camundongos Knockout , Niacina/metabolismo , Niacinamida/administração & dosagem , Niacinamida/metabolismo , Niacinamida/farmacocinética , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Compostos de Piridínio/administração & dosagem
18.
Methods Mol Biol ; 2274: 271-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050479

RESUMO

A method to generate small amount of reactive oxygen species (ROSs) at intracellular targeted region has great potential to manipulate the function of particular proteins. The present protocol introduces a fusion protein that consisted of firefly luciferase (FLuc), photosensitizer protein KillerRed and F-actin-targeting peptide Lifeact (Lifeact-KillerFirefly) to generate ROSs in the vicinity of F-actin and found that morphological change in F-actin structure was induced by the fusion protein after luciferin treatment. This manipulating and imaging method is of use to analyze the role of the locally generated ROSs on the function of intracellular proteins.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Fármacos Fotossensibilizantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Humanos , Substâncias Luminescentes/química , Imagem Óptica/métodos
19.
PLoS One ; 16(3): e0248267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760832

RESUMO

Meflin (Islr) expression has gained attention as a marker for mesenchymal stem cells, but its function remains largely unexplored. Here, we report the generation of Meflin-CreERT2 mice with CreERT2 inserted under the Meflin gene promoter to label Meflin-expressing cells genetically, thereby enabling their lineages to be traced. We found that in adult mice, Meflin-expressing lineage cells were present in adipose tissue stroma and had differentiated into mature adipocytes. These cells constituted Crown-like structures in the adipose tissue of mice after high-fat diet loading. Cold stimulation led to the differentiation of Meflin-expressing lineage cells into beige adipocytes. Thus, the Meflin-CreERT2 mouse line is a useful new tool for visualizing and tracking the lineage of Meflin-expressing cells.


Assuntos
Tecido Adiposo Branco , Imunoglobulinas , Células-Tronco Mesenquimais/citologia , Camundongos Transgênicos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Expressão Gênica , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
Nat Commun ; 12(1): 1848, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758193

RESUMO

Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sequência de Aminoácidos , Animais , Transtorno do Espectro Autista/metabolismo , Escala de Avaliação Comportamental , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/genética , Domínios Proteicos , Processamento de Proteína , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Recombinantes , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Comportamento Social , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...